

## **Faculty of Health and Applied Sciences**

## **Department of Health Sciences**

| QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES |                      |  |  |
|--------------------------------------------------------|----------------------|--|--|
| QUALIFICATION CODE: 08BMLS                             | LEVEL: 6             |  |  |
| COURSE: MOLECULAR DIAGNOSTICS                          | COURSE CODE: MOD621S |  |  |
| DATE: NOVEMBER 2019                                    | SESSION:             |  |  |
| DURATION: 3 HOURS                                      | MARKS: 100           |  |  |

| FIRST OPPORTUNITY EXAMINATION QUESTION PAPER |                    |  |  |  |
|----------------------------------------------|--------------------|--|--|--|
| EXAMINER(S)                                  | Ms V Tjijenda      |  |  |  |
| MODERATOR:                                   | Dr A Shiningavamwe |  |  |  |

### **INSTRUCTIONS**

- 1. Answer all questions.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

#### Permissable material

Non programmable calculator is allowed.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Excluding this front page)

# SECTION A (27 MARKS)

| Write short notes on the following.  1.1 Sanger sequencing method (3) (3) 1.2 Taq polymerase 1.3 Diethyl pyrocarbonate (DEPC) (3) 1.4 Uni-directional work flow (3) 1.5 Central dogma of Biology (3)  QUESTION 2 [12] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1 Sanger sequencing method  1.2 Taq polymerase  1.3 Diethyl pyrocarbonate (DEPC)  1.4 Uni-directional work flow  1.5 Central dogma of Biology  (3)  (3)  (3)  (3)  (1)                                              |
| 1.3 Diethyl pyrocarbonate (DEPC)  1.4 Uni-directional work flow  1.5 Central dogma of Biology  (3)  QUESTION 2                                                                                                        |
| 1.4 Uni-directional work flow 1.5 Central dogma of Biology  QUESTION 2  (3)  (3)                                                                                                                                      |
| 1.5 Central dogma of Biology (3)  QUESTION 2                                                                                                                                                                          |
| QUESTION 2 [12]                                                                                                                                                                                                       |
|                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                       |
| Identify ONE assay that can be used for each of the following:                                                                                                                                                        |
| 2.1 Compare gene expression in acute myeloid leukemia and chronic myeloid (1)                                                                                                                                         |
| Leukemia.                                                                                                                                                                                                             |
| 2.2 Amplify DNA sequence to make multiple copies. (1)                                                                                                                                                                 |
| 2.3 Locate the chromosome number responsible for down syndrome. (1)                                                                                                                                                   |
| 2.4 Convert viral RNA to cDNA for further analysis. (1)                                                                                                                                                               |
| 2.5 Quantification of viral load. (1)                                                                                                                                                                                 |
| 2.6 Proteomic analysis. (1)                                                                                                                                                                                           |
| 2.7 Separation of DNA and RNA based on charge and size. (1)                                                                                                                                                           |
| 2.8 Genomic strain typing of an <i>E. coli</i> outbreak. (1)                                                                                                                                                          |
| 2.9 Identification of novel mutations. (1)                                                                                                                                                                            |
| 2.10 Forensic investigations. (1)                                                                                                                                                                                     |
| 2.11 Modified form of polymerase chain reaction (PCR) which avoids a non-specific (1)                                                                                                                                 |
| amplification of DNA by inactivating the DNA polymerase at lower temperatures.                                                                                                                                        |
| 2.12 NGS technology that sequence DNA via three basic processes: amplify, sequencing and analyses using a bridging method.                                                                                            |

**QUESTION 5** 

### **SECTION B (43 MARKS)**

| QUESTION 3                                                                                | [10] |
|-------------------------------------------------------------------------------------------|------|
| 3.1 Define restriction enzyme.                                                            | (1)  |
| 3.2 Design a 10 nucleotides long palindrome sequence.                                     | (3)  |
| 3.2.1 Digest the palindrome sequence obtained in 3.2 such that it yields a blunt end.     | (2)  |
| 3.2.2 Digest the palindrome sequence obtained in 3.2 such that it yields a 3' sticky end. | (2)  |
| 3.3 Provide the formula for calculating melting temperature.                              | (2)  |
| QUESTION 4                                                                                | [7]  |
| Using your knowledge of nucleic acid extraction and purification using the phenol         |      |
| chemical method, answer the following questions.                                          |      |
| 4.1 Identify four components of the lysis buffer.                                         | (4)  |
| 4.2 Explain the importance of the chloroform/isomamylalcohol (24:1) step.                 | (1)  |
| 4.3 Why is sodium acetate added.                                                          | (1)  |
| 4.4 Explain the role of ice-cold isopropanol.                                             | (1)  |
|                                                                                           |      |
|                                                                                           |      |

Neisseria gonorrhoeae is a sexually transmitted infection with resistance to previously and currently recommended antimicrobials. Both culture and Southern blotting technique are used for diagnosis. The ctaA gene encodes an outer membrane protein that's a target for antibiotics and is used as target for PCR. The presence of the ctaA gene confers antibiotic resistance. Three cases, A, B, and C of suspected Neisseria gonorrhoeae gave the following results during diagnosis:

| CASES             | А | В | С |
|-------------------|---|---|---|
| DST Culture       | S | R | R |
| Southern Blotting | - | - | + |
| (gene ctaA)       |   |   |   |

Table 1: DST culture and Southern Blotting drug resistance results for N. gonorrhoeae.

[26]

| DST   | culture and northern blotting results.                                           |      |
|-------|----------------------------------------------------------------------------------|------|
| 5.1.1 | L For patient A                                                                  | (2)  |
| 5.1.2 | 2 For patient B                                                                  | (2)  |
| 5.1.3 | 3 For patient C                                                                  | (2)  |
| 5.1.4 | From your observation, what does it suggest on the sole use of ctaA detection in | (2)  |
|       | N. gonorrhoeae resistance diagnosis.                                             | (2)  |
| 5.1.5 | Is this molecular method quantitative or qualitative. Justify.                   | (2)  |
| 5.2   | Explain the steps in the Southern Blotting method.                               | (10) |
| 5.3   | Compare traditional PCR to real time PCR.                                        | (6)  |
|       |                                                                                  |      |
|       | SECTION C (30 MARKS)                                                             |      |
| QUE   | STION 6                                                                          |      |
| 6.1 [ | Discuss the principle of Western Blotting.                                       | (10) |
| 6.2 Y | ou are employed at NSVP Scientific molecular department. You are requested to    |      |
| C     | design primers for a postgraduate master's research. Explain important           | (10) |
| c     | considerations when designing the primers.                                       |      |
| 6.3   | Generate the gel electrophoresis profile of the following sequence               | 1    |
| ι     | using the Maxam Gilbert chemical method.                                         | (10) |
|       | 5' ATTGACTTAGCC 3'                                                               |      |

Provide the likely explanations for either the discrepancy or congruency between the

### **END OF EXAMINATION**